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ABSTRACT . Ant Colony Optimization (ACO) is a promising new approach
to combinatorial optimization. Here ACO is applied to the traveling salesman
problem (TSP). Using a genetic algorithm (GA) to �nd the best set of param-
eters, we demonstrate the good performance of ACO in �nding good solutions
to the TSP.
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1. Introduction

Social insects|ants, bees, termites and wasps|exhibit a collective problem-
solving ability (Deneubourg and Goss, 1989; Bonabeau et al., 1997). In particu-
lar, several ant species are capable of selecting the shortest pathway, among a set
of alternative pathways, from their nest to a food source (Beckers et al., 1990).
Ants deploy a chemical trail (or pheromone trail) as they walk; this trail attracts
other ants to take the path that has the most pheromone. This reinforcement
process results in the selection of the shortest path: the �rst ants coming back
to the nest are those that took the shortest path twice (to go from the nest to
the source and to return to the nest), so that more pheromone is present on the
shortest path than on longer paths immediatly after these ants have returned,
stimulating nestmates to choose the shortest path. Taking advantage of this ant-
based optimizing principle combined with pheromone evaporation to avoid early
convergence to bad solutions, Colorni et al. (1991, 1992, 1993), Dorigo et al.

(1996), Dorigo and Gambardella (1997a, 1997b; Gambardella and Dorigo, 1995)
and Gambardella et al. (1997) have proposed a remarkable optimization method,
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Ant Colony Optimization (ACO), which they applied to classical NP-hard combi-
natorial optimization problems, such as the traveling salesman problem (Lawler
et al., 1985), the quadratic assignment problem (Gambardella et al., 1998) or
the job-shop scheduling problem (Colorni et al., 1993), with reasonable success.
More applications are described by Bonabeau et al. (1998). The parameters of
the ACO algorithms developed in these papers were hand-tuned. In the present
letter we demonstrate the good performance of ACO algorithms when parame-
ters are selected using a systematic procedure. More precisely we use a genetic
algorithm (Goldberg, 1989) to evolve ACO algorithms. A simple implementa-
tion of this approach, tested on the traveling salesman problem (TSP), resulted
in: (1) increased convergence speed (compared to the performance of the best
hand-tuned ACO algorithm) toward the optimal solution for a 30-city problem
(Whitley et al., 1989), and (2) several very good oating point solutions for a
51-city problem (Eilon et al., 1969). Our results suggest that it might be possible
to systematically �nd parameters that signi�cantly increase the performance of
ACO algorithms, and con�rm that ACO is more than an exotic metaheuristic
as it compares well with existing algorithms on popular benchmark problems.

2. ACO algorithm for the TSP

In this section we briey describe Ant Colony System (ACS), an ACO algorithm
introduced by Dorigo and Gambardella (1997a, 1997b). Let us consider a sym-
metric TSP with n cities. Let m be the total number of ants, assumed constant
over time. For an ant located on city i, the transition from city i to city j depends
on:

(1) Whether or not city j has already been visited. Each ant has a tabu list
that contains all the cities that the ant has already visited. Let Jk(i) be the set
of cities that remain to be visited by ant k when ant k is currently on city i.

(2) The distance dij between i and j. dij = dji for a symmetric TSP.

(3) The amount of "arti�cial pheromone" on the edge connecting i to j, de-
noted by (i; j).

Let �ij(t) be the total amount of pheromone on edge (i; j) at time t. Time
is incremented by 1 when all ants have completed a tour. The initial amount
of pheromone on edges is assumed to be a small positive constant c: 8(i; j),
�ij(t = 0) = c. At the beginning of each iteration, ants are placed randomly on
the cities. When on city i, ant k selects which city, j, to move to. To do so ant k
checks the candidate list associated with city i, which is a list of preferred cities
to be visited from city i: instead of examining all possibilities from any given city,
unvisited cities in the candidate list are examined �rst, and only when all cities
in the candidate list have been visited are other cities examined. The candidate
list of a city contains the nl closest cities. Cities in the candidate list are ordered
by increasing distance, and the list is scanned sequentially. Ant k �rst chooses
the next city to hop to from the list, and, if all cities in the candidate list have
already been visited, selects city j according to:
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where q is a real random variable uniformly distributed in the interval [0; 1], q0
is a tunable parameter (0 � q0 � 1), and J 2 Jk(i) is a node that is randomly
selected according to probability
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where � and � are two adjustable parameters that control the relative inuences
of trail intensity (�iJ (t)) and distance (diJ ). If �=0, the closest cities are more
likely to be selected: this corresponds to a classical stochastic greedy algorithm
with multiple starting points because ants are initially randomly distributed on
the nodes. If �=0, only pheromone ampli�cation is at work: this method will lead
to the rapid selection of tours which may be far from optimal. q � q0 corresponds
to an exploitation of the network, that makes use of distances between cities and
of existing pheromone trails by choosing the best local compromise between
distance and pheromone concentration, whereas q > q0 favors more exploration.
Cutting exploration by tuning q0 allows to concentrate the activity of the system
on the best solutions, instead of letting it explore constantly.
Pheromone trails are updated locally and globally:

Local update. When, while performing a tour, ant k is on city i and selects city
j (2 Jk(i)) as the next city to hop to, the pheromone concentration of (i; j) is
immediatly reinforced by a �xed amount �0. The trail decays simultaneously, so
that:

�ij  (1� �l) � �ij + �l � �0 (2.3)

where �l (0 � �l � 1) is a parameter governing local trail decay.
Global update. The ant that performed the best tour since the beginning of the
trial is allowed to globally update the concentrations of pheromone on the corre-
sponding edges. To improve the solutions found by ants, a local search procedure
is performed. In the case of TSP, the most widespread local search procedures
are 2�opt and 3�opt (Lin, 1965), and Lin-Kernighan (LK) (Lin and Kernighan,
1973), whereby two, three and a variable number of edges, respectively, are ex-
changed. In the present paper we restrict ourselves to 2� opt. Each ant's tour is
modi�ed by applying 2� opt a certain number of times, denoted by �. If, after
application of the sequence of � 2�opt swaps, no better solution has been found
the original tour is kept, otherwise the better tour is kept. �ij(t) is then modi�ed
by an amount ��ij(t) as follows:

��ij(t) =

(
Q

(L+)
 if (i; j) 2 T+;

0 otherwise:
(2.4)
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where Q is a tunable parameter, T+ is the best tour since the beginning of the
trial and L+ is its length.  = 1 is a parameter introduced in this study. Only
the best tour is reinforced through the global update. Here again, trail decay is
implemented:

�ij(t+ 1) (1� �g) � �ij(t) + �g ���ij(t) (2.5)

where �g (0 � �g � 1) is a paremeter governing global trail decay.
Using this method with hand-tuned parameters, Dorigo and Gambardella

(1997a, 1997b) obtained very good results, in terms of the quality of the solu-
tions generated and of CPU time. Using a more systematic method to determine
parameters we report an even better performance in the next section.

3. Evolving ACO for the TSP

3.1. Parameters evolved

We use a GA to evolve some of the parameters of the ACO algorithm described
in the previous section. The parameters that have been subjected to the GA
search are summarized in Table 1 together with their ranges of variation. The
number of ants, m, is included because it is unclear how many ants are necessary
to �nd a very good solution in an eÆcient way for a problem of a given size. A
related question is: how does the optimal value of m scale with n? The exploita-
tion probability, q0, is another parameter for which the optimal value is unclear.
Intuitively it seems this parameter should be relatively problem-independent.
The two parameters � and �, which determine the respective weights of the
pheromone trail and the distance between two nodes, and the two parameters
�l and �g , which govern local and global trail decay, respectively, are also im-
portant and, hopefully, are problem-independent. The same may apply to �0,
the amount of local reinforcement, although Dorigo and Gambardella (1997a,
1997b) suggest that it depends on the typical length of a tour obtained from
a greedy algorithm. The Q parameter scales the amount by which the trail is
modi�ed in the global update procedure. The optimal value of Q may or may
not be problem-dependent. The same holds for , which, depending on its value,
ampli�es or reduces the inuence of shorter tours on the global update. The
number of 2 � opt swaps, �, is assumed to be of the form � = E[a � nb], where
n is the number of cities, a and b are two positive parameters which determine
how � should scale with problem size, and E[x] is the integer part of x. a and b

are part of the evolutionary search. Finally, in principle the size of the candidate
list, nl, should also be included in the search. Since we consider relatively small
problems here, we set nl = 1, that is, the candidate list contains only the closest
city. It will be interesting in future studies to investigate how the optimal value
of nl scales with problem size.

3.2. Fitness function and GA

In the GA, each colony, characterized by a set of parameters, is an individual.
Colonies are in competition to make it to the next generation. The �tness func-
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Table 1: Parameters evolved and their ranges.

Range

1 � m � 2 � n
0:0 � q0 � 1:0
0:0 � � � 5:0
0:0 � � � 10:0

0:0 � �local � 1:0
0:0 � �global � 1:0
0:0 � Q � 100:0
0:1 �  � 3:0
0:0 � �0 � 0:5
0 � a � 9

0:0 � b � 1:0
nl = 1

tion F used in this study is the weighted sum of four components: F =
P4

i=1 ci�Fi,
where ci is the weight of component i.
(1) F1 = 1

L+1�L+
, where L is the best tour found by the colony and L+ is

the best tour length found by all of the colonies thus far. Although in principle
this component can diverge we never encountered a problem in our simulations.
Note that this component is relative to the performance of other colonies. c1 =
2:0� 3:0.
(2) F2 = e�

v
5�n , where v is the iteration in which the best tour was found.

F2 reects the fact that it is important for the best tour to be found quickly.
c2 = 0:5� 0:8.
(3) F3 = e�

m
10�n encourages m to be as small as possible. It is important to try

to minimize m as the CPU time per iteration scales linearly with m. c3 = 0:5.
(4) F4 = e�

�
n . It is important to minimize the number of 2 � opt swaps per

ant as the CPU time per iteration scales linearly with �. c4 = 0:2� 0:5.
Note that F3 and F4 do not directly depend on how well the algorithm performs

but rather on parameters that inuence its speed of convergence toward a good
solution. Alternatively, and better even, components F2, F3, and F4 could be
replaced by the CPU time required to �nd the best tour.
We use a simple GA implementation, the details of which are described by

Riolo (1992). A random genome is created for each individual with each gene as
a bit string of length 16 coding for a parameter. The �tness of each individual is
evaluated by running the ACS algorithm. Selection, crossover and mutation take
place according to the speci�cations in Riolo (1992). The percentages chosen for
selection and crossover are both 75% and the rate of mutation is 0.3%. All runs
have a population size of 40 and stop after 100 generations.

3.3. Results

3.3.1. Oliver30

The description of this Euclidian 30-city TSP can be found in Whitley et al.

(1989).
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Figure 1: Best, worst and average �tness as a function of generation number for Oliver30.

Table 2: Parameters for Oliver30.

Parameter Value

m 14
q0 0.384665
� 0.370642
� 6.683146
�local 0.302831
�global 0.308385
Q 78.042267
 0.671618
�0 0.409461
a 5
b 0.968872

Figure 1 shows the evolution of the best, worst and average �tness. The evo-
lutionary search was able to �nd parameter values (summarized in Table 2)
which signi�cantly improved on the results obtained by Dorigo and Gambardella
(1997a,b). These authors describe a set of parameters which allows ACS to �nd
the optimal solution (represented in Figure 2, integer length: 420, oating point
length: 423.74) after 830 ACS iterations with 10 ants, that is, after 8300 ant-
cycles. One ant-cycle corresponds to one ant performing a complete tour. An
algorithm, with 14 ants, which always �nds the optimal solution was found with
the GA: the algorithm was tested 30 times and the average number of cycles it
requires to �nd the optimal solution is 352 (std=260.53), that is, 4928 ant-cycles.

3.3.2. Eil51

Eil51 can be obtained in the TSPLIB library of problems for the TSP at:
ftp://ftp.zib.de/pub/Packages/mp-testdata/tsp/tsplib/index.html.
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Figure 2: Optimal tour for Oliver30, Length = 423.740563

The best known integer length solution to Eil51, listed in TSPLIB, is repre-
sented in Figure 3 and has a oating-point length of 429.983312. The parameters
obtained by running the GA on Oliver30 were used (Table 2) with the exception
of the number of ants, m, which was set to m = 25. The parameters obtained
for Oliver30 were assumed to work well for Eil51 as these two problems are char-
acterized by similar optimal tour lengths. This assumption is con�rmed by the
quality of the tours found by the algorithm. We were able to �nd three tours with
respective oating-point lengths 429.737129 (Figure 3.3.2), 429.117939 (Figure 5)
and 428.981647 (Figure 6). The details of these tours are given in the �gure leg-
ends. While Figures 3.3.2 and 5 represent tours that are variations on the best
known tour, Figure 6 represents a solution which varies signi�cantly from the
other solutions.

4. Conclusion and future work

The results presented in this paper are extremely encouraging. They indicate
that using an evolutionary search to �nd the best parameters of an ACO algo-
rithm can result in signi�cant computation time improvments on existing ACO
algorithms. The obtained algorithms compare well with other existing combi-
natorial optimization algorithms on Eil51, suggesting that it could also be true
for other TSP instances as well as for other problems. Maniezzo and Colorni
(1998) report that hand-tuned ACO algorithms applied to the quadratic assign-
ment problem improve on the best known results on structured problems, that
is, instances taken from real-world applications: in view of the results of the
present paper, tuning the parameters of the ACO algorithms with an automated
search might result in even better solutions. We have to mention for completeness
the work of White et al. (1998), who seem to have been the �rst to actually use a
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Figure 3: Best tour for Eil51 as reported in TSPLIB. Length: 429.983312.
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Figure 4: Tour found by present study. Length: 429.737129. Tour: 6 48 23 7 43 24 14 25
13 41 19 40 42 44 15 45 33 39 10 49 9 30 34 21 50 16 2 29 20 35 36 3 28 31 26 8 22 1 32 11
38 5 37 17 14 18 47 12 46 51 27
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Figure 5: Tour found by present study. Length: 429.117939. Tour: 6 48 23 7 43 24 14 25
13 41 40 19 42 44 15 45 33 39 10 49 9 30 34 50 16 21 29 2 20 35 36 3 28 31 26 8 22 1 32 11
38 5 37 17 4 18 47 12 46 51 27
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Figure 6: Tour found by present study. Length: 429.981647. Tour: 46 12 47 4 18 14 25 13
41 40 19 42 44 17 37 15 45 33 39 10 49 5 38 11 32 1 22 2 16 50 9 30 34 21 29 20 35 36 3 28
31 8 26 7 43 24 23 48 6 27 51
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GA to evolve the parameters of their ant-based algorithms, in this case routing
algorithms for communications networks. Unfortunately, their algorithms were
not tested on any common benchmark problem and it is therefore hard to com-
ment on their results.
Although the method presented in this paper looks promising, a lot more work

needs to be done. The method has to be tested on many more TSP instances, in-
cluding signi�cantly larger ones. However, the approach is computation-intensive,
as it requires running ACS on each problem 40 times per generation. To overcome
this issue, it would be useful to understand how the best parameters scale with
problem size and tour length. Once this is known, the parameters obtained for
small problems can be generalized to larger problems. This, of course, assumes
that there exist well-de�ned scaling laws.
Preliminary results on including a form of division of labor (Robinson, 1992)

into the ACO algorithm, with groups of ants characterized by di�erent parame-
ters within the same colony, are also promising. The existence of three classes (or
castes) of ants was assumed, each class being characterized by a di�erent value
of the exploitation parameter q0. Five parameters were evolved: three values of
q0 (one per caste) and the fractions of ants in each caste (two parameters since
the three fractions add up to make 1). All other parameters remained �xed in
the course of the evolutionary search (parameters from Dorigo and Gambardella
(1997a,b)). Extremely good solutions were found in the �rst generations|so
that the GA did not make much progress after that. A set of parameters was
obtained that resulted in the optimal solution of Oliver30 being found after only
70 ant-cycles (7 cycles with 10 ants). More tests are required to con�rm this
result.
Finally, although we have used a GA to evolve the parameters of an ACO

algorithm, the very same approach can be used to evolve the parameters of
other optimization algorithms (Lin et al., 1993).
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